
Extending SELinux to track memory-pages

accesses

Martin Peres, supervised by Jérémy Briffaut
ENSI de Bourges

February 11, 2011



Contents

1 Introduction 4

2 State of the art 5
2.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Access control models . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Multilevel security . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Domain and Type Enforcement . . . . . . . . . . . . . . . 7
2.2.3 Role-Based Access Control . . . . . . . . . . . . . . . . . 8

2.3 Hardware overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Security mechanisms in hardware . . . . . . . . . . . . . . . . . . 13
2.4.1 Rings: The principle of least privilege applied to the CPU 13
2.4.2 The No eXecute bit . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Controlling direct memory accesses . . . . . . . . . . . . . 14
2.4.4 IOMMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.5 Memory access control . . . . . . . . . . . . . . . . . . . . 15

2.5 Linux Security Systems . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Linux Security Module . . . . . . . . . . . . . . . . . . . . 17
2.5.2 GrSecurity . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 SELinux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Extending SELinux to track memory-pages accesses 21
3.1 Installing an SELinux Distribution . . . . . . . . . . . . . . . . . 21

3.1.1 Fedora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Gentoo Hardened . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Action Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Adding ourselves in KBuild . . . . . . . . . . . . . . . . . 23
3.2.2 Tag the memory pages . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Finding the functions to hook . . . . . . . . . . . . . . . . 24
3.2.4 Adding the LSM hooks . . . . . . . . . . . . . . . . . . . 26
3.2.5 From LSM to the SELinux’s AVC . . . . . . . . . . . . . 27

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1



Appendices 31

A SELinux 32
A.1 Writing an SELinux policy . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Example of SELinux kernel logs . . . . . . . . . . . . . . . . . . . 34

B Useful Pax documentation 35
B.1 PageExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 36

B.2 SegMem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
B.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 38

B.3 The coverage test . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.3.1 The test itself . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.3.2 Output of the program on the hardened Kernel . . . . . . 40
B.3.3 The generated SELinux trace . . . . . . . . . . . . . . . . 41

Bibliographie 50

2



List of Figures

2.1 The Bell-LaPadula security model . . . . . . . . . . . . . . . . . 6
2.2 The Biba security model . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The DTE and MLS models compared . . . . . . . . . . . . . . . 8
2.4 General overview of the main components of a motherboard . . . 9
2.5 General overview of what is virtual memory . . . . . . . . . . . . 10
2.6 Paging on x86 processors . . . . . . . . . . . . . . . . . . . . . . 11
2.7 General overview of the address translation process . . . . . . . . 12
2.8 Flow diagram of Linux’s page fault handler. Copyright “Under-

standing the Linux Kernel”[10] . . . . . . . . . . . . . . . . . . . 13
2.9 CPU’s rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 IOMMU versus MMU . . . . . . . . . . . . . . . . . . . . . . . . 15

3



Chapter 1

Introduction

There are several Mandatory Access Control systems for Linux, but none of
them actually brings MAC into the memory pages.

Would it be possible to extend SELinux to add support for memory pages
access control on the x86 architecture? What would be the performance hit?

4



Chapter 2

State of the art

2.1 Security

Security is always led by the principle of least privilege[1]. It means that a
process should only be able to perform its task and nothing more.

Following this principle results in a greater system reliability and security as
sub-systems are not able to interact with each others unless they are supposed
to. The thus simplified system can then be audited and proved more easily.

We can distinguish three different security threats[2]:

• Confidentiality: An unauthorized personnel read confidential data

• Integrity: An unauthorized personnel modified data

• Availability: An unauthorized personnel managed to prevent the system
from working

2.2 Access control models

Access control models allow to control users’ file accesses according to the
user’s privilege. All access control models fall into two categories. The discre-
tionary (DAC) and the mandatory (MAC) access control models.

DAC lets users manage their files and define what operations other users can
perform on them. This is a security threat as applications launched by the
user have the right to change the availability of a potentially-confidential file to
others.

The MAC policy is set by system administrators. This access control is usually
set as a second layer of protection after DAC. This extra layer allows system
administrators to enforce some security properties. It enhances security as users
can’t do everything they want with their files anymore.

5



2.2.1 Multilevel security

Multilevel security (MLS[3]) is a data classification model proposed by Brotz-
man in 1985 for the USA’s Department Of Defence(DoD) as “Guidance for
Applying the Department of Defense Trusted Computer System Evaluation Cri-
teria in Specific Environments”.

This paper introduced different levels of accreditation such as:

• Top Secret

• Secret

• Confidential

• Unclassified

Labeling data with an accreditation level eases data access by authorized person-
nel while making it harder for the unauthorized ones to break its confidentiality
or integrity.

MLS is a requirement for the Bell-LaPadula and Biba models.

Bell-LaPadula

The Bell-LaPadula[4] model can be considered as a MAC model. This model
defines entities(subjects) requesting to access objects (files, data). In an MLS
environment, this model can be summed-up as no read-up, no write-down. See
figure 2.1.

Top Secret

Secret

Confidential

Unclassified

Top Secret

Secret

Confidential

Unclassified

Subject
(accreditation)

Object
(security label)

read, write
read down, no write down

write up, no read up

Figure 2.1: The Bell-LaPadula security model

This model preserves confidentiality but fails at preserving integrity. Also,
when applied, this model tends to over-classify information which finally leads
to having all the files in the top secret level. This is because there is no way for
applications to de-classify data automatically.

6



Biba

The Biba[5] model is a clone of the Bell-LaPadula model that focuses on
integrity instead of confidentiality. In an MLS environment, this model can be
summed-up as no write-up, no read-down. This is the exact opposite of the
Bell-LaPadula model. See figure 2.2.

Top Secret

Secret

Confidential

Unclassified

Top Secret

Secret

Confidential

Unclassified

Subject
(accreditation)

Object
(security label)

read, write
write down, no read down

read up, no write up

Figure 2.2: The Biba security model

The Biba model also suffers the same problems as the Bell-LaPadula model,
but the other way around.

2.2.2 Domain and Type Enforcement

The major problem of the MLS approach of security is that not all systems
are that hierarchical. Actually, most of them are not.

With the MLS approach, it means that people working on a top secret project
get clearance to every top secret project when they only needed to get clearance
relative to their work. This is a direct violation of the principle of least privilege
and this is what the Domain and Type Enforcement[6] is all about.

Using DTE, independent components of the system are isolated from each
others in what are called domains or sandboxes. See figure 2.3.

Subjects, Objects and Actions

The DTE model formalizes system interactions and gives names to different
entities:

• Subject: The initiator of the interaction (may be a person or a process)

• Action: The kind of action done by the subject on the object

• Object: The object on which the action is performed by the subject.

Then the mandatory access control checks whether the interactions on the
system are legal or not and applies the decision as whether the interaction
should be pursued or not.

7



Figure 2.3: The DTE and MLS models compared

2.2.3 Role-Based Access Control

The Bell-LaPadula or Biba models being too difficult to implement for indus-
tries, most of them sticked to DAC. This lead to the Role-Based Access Control
(RBAC)[7] model.

RBAC is a MAC model which describes allowed interactions in terms of roles
instead of users. This eases the administrators’ work as they only need to write
the policies once and then assign users a role. As industries already have role-
based tasks, this makes sense to keep these roles for the data access control.

8



2.3 Hardware overview

Now that the major security models have been described, it is time to look
at how the hardware works.

As you can see on the figure 2.4, the northbridge interconnects everything. Its
task is to provide access to the memory to the system. There are two ways to
access the central memory, either the CPU accesses it or a device knowing how to
do Direct Memory Access(DMA). Given that memory accesses are performance
critical, the northbridge needs to answer requests in a timely fashion.

CPU

Flash ROM
(BIOS)

Super I/O
Serial Port

Parallel Port
Floppy Disk

Keyboard
Mouse

Northbridge 

(memory
controller hub)

Southbridge
(I/O controller

hub)
IDE

SATA
USB

Ethernet
Audio Codec

CMOS Memory

Onboard
graphics
controller

Clock
GeneratorGraphics

card slot

High-speed
graphics bus
(AGP or PCI

Express)

Chipset

Front-side
bus

Memory
bus

Memory Slots

PCI
Bus

PCI Slots

LPC
Bus

Internal
Bus 

PCI
Bus

Cables and
ports leading

off-board

Figure 2.4: General overview of the main components of a motherboard

The southbridge is dedicated to connecting low-bandwidth peripherals to the
faster quatuor that is the CPU, the northbridge, the memory and the graphic
card.

9



Graphic cards are a central element on today’s desktop computers. As they
communicate a lot with the CPU (through Memory-Mapped IO(MMIO) and
DMA), they have a dedicated high-speed PCI Express or AGP bus directly
connected to the northbridge. This is the only peripheral to have access direct
access to the northbridge.

The rest is pretty much self-explanatory or doesn’t pose any security threat
that I try to address in this paper.

2.3.1 Virtual Memory

Overview

Virtual memory has always been a feature provided by any x86 processor but
support failed to appear to the general public until Windows 3.0.

Disk

RAM

Virtual Memory
(Per Process)

Physical
Memory

Figure 2.5: General overview of what is virtual memory

As shown on the figure 2.5, the goal of virtual memory is to add an indi-
rection layer between the addresses processed by a processus and the physical
RAM. This technique makes it possible for processes to allocate big chunck of
contiguous memory in their virtual memory space even though there is no such
contiguous space in the physical memory space. Also, it made possible for the
OS to emulate a bigger physical memory by dumping some rarely-used memory
areas to the hard disk drive. On Unix, this is the role of the swap partition.

The introduction of this indirection layer is also a nice security feature as
processes are now jailed into their virtual memory space and cannot access

10



others’ memory space.

Paging

To avoid fragmentation and increase the speed of virtual to physical memory
address translation, memory pages have been introduced. A page is the smallest
memory space an Operating System can allocate. On x86 processors, the typical
memory page is 4KB.

As can be seen on figure 2.6, a 32-bits physical memory address is split in 3
parts:

• Offset: Composed of 12 bits, it can address 212 bits = 4KB, the size of
a memory page. This means the lower 12 bits are used to address every
byte of a memory page.

• Page: Composed of 10 bits. This can address 1000(210) memory pages.

• Directory: Composed of 10 bits. This can address 1000 page directories.

In the end, a 32-bits processors can address one million(210+10) 4KB memory
pages.

08162431 15 723

...
...

...
...

...
...

4
K

sm
e
m

o
ry

sp
a
g
e

10

32*

1210

Linear address:

pagesdirectory

32sbitsPD
entry

CR3

*)s32sbitssalignedstosas4-KBytesboundary

pagestable

32sbitsPT
entry

Figure 2.6: Paging on x86 processors

Address translation

When the processor wants to access a memory address, it goes through the
Memory-Management Unit(MMU) that will handle the request for him.

As the processor usually deals with virtual addresses, it is the MMU’s task
to translate those virtual addresses into physical ones. To do so, the MMU
first looks into the Transition Look-aside Buffer(TLB) for an already known
correspondence. If there are no matches, the MMU calls for help to the OS by
issuing an Interruption Request(IRQ), this IRQ is called page fault.

11



It is possible to flush the content of the entire TLB, just a specific range of
linear address or a single page. This list is not comprehensive, there are several
other possibilities.

There are in fact at least two independent TLBs in the MMU. The Instruction-
fetch Transition Look-aside Buffer(ITLB) is used for fetching instructions while
the Data Transition look-aside Buffer(DTLB) is used for data (read/write)
transferts.

See figure 2.7 for a visual representation of the virtual-to-physical translation
of the memory address.

Figure 2.7: General overview of the address translation process

Page fault

There are multiple reasons for an OS to receive a page fault. This goes from
the simplest case of the MMU asking for help on virtual-to-physical memory
address to the implementation of Linux’s famous Copy-on-Write system. See
figure 2.8 for a detailed flow-chart of Linux’s page fault handler.

x86 processors don’t make any difference between reading a memory page or
executing code from it. We’ll talk about it a bit later.

When getting a page fault on an x86 processor, Linux gets the address of the
page that needs to be addressed and some flags (bitfield):

• bit 0 - 0: no page found 1: protection fault

• bit 1 - 0: read access 1: write access

• bit 2 - 0: kernel-mode access 1: user-mode access

• ...

If bit 0 is set, it means the processor tried to access a memory page (read/ex-
ecute or write) without having the right to do so.

12



Figure 2.8: Flow diagram of Linux’s page fault handler. Copyright “Under-
standing the Linux Kernel”[10]

2.4 Security mechanisms in hardware

Now that we have roughly seen how the hardware works, let’s see what secu-
rity features are available to us.

2.4.1 Rings: The principle of least privilege applied to the
CPU

The most famous hardware security feature is the privilege separation pro-
vided by the CPU’s rings. On an x86 processor, there are 4 rings, going from
the most privileged to the least privileged (0 7→ 3).

Virtualization-related ring -1 put aside, the level 0 is the most privileged level.
It basically allows full access to the hardware.

On the contrary, the level 3 is only suitable for applications. Indeed, this level
of privilege doesn’t let the executed program exit its virtual memory space. If
it tries to, the MMU would trap the call which would result in the OS killing

13



Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Device drivers

Applications

Device drivers

Least privileged

Most privileged

Figure 2.9: CPU’s rings

the application. Though, the level 3 allows shared-memory access across appli-
cations, but it has to be set-up by the OS.

Typically, you’ll find that only two rings are effectively used by the Operating
Systems, the more privileged for the kernel-space and the least privileged for
the user-space.

On a side note, changing the ring is really expensive. On Linux, it takes
generally ∼1000 to ∼1500 CPU cycles for a round trip from the level 3 to the
level 0 and back to the level 3 again. This is to be compared to the ∼100 CPU
cycles it takes to perform a context-switch (switch from a process to an other,
see scheduling).

2.4.2 The No eXecute bit

Initially introduced by AMD in his AMD64 architecture, the NX bit works
around the security gap introduced by not differencing executions from reads in
x86’s memory pages access protocol.

When set on a memory page, this bit prevents the execution of code from
this page. This allows the physical separation of the code from the data (stack,
heap) of a program. This make applications less vulnerable to the exploitation
of Buffer Overflows which are one of the primary vector of attack on a system
where physical access is impossible.

Intel copied this extension in their architecture but named it the eXecute
Disable(XD) bit.

2.4.3 Controlling direct memory accesses

Now that we have seen that applications are jailed into a virtual memory
space, there are other devices which can access the memory.

14



Basically, we’ve already seen that any PCI, SATA, IDE or SCSI peripheral
are able to access memory directly through the Southbridge and then the North-
bridge This allows malicious devices to copy sensitive information from a process
to another (malicious) process which could then send this data to anyone.

The problem is that DMA eludes the control of the Kernel which was supposed
to be the only one to be able to access the memory directly. To address the
problem, the Input/Ouput Memory Management Units(IOMMU) have been
introduced.

2.4.4 IOMMU

The IOMMU’s role is to restrict the different peripherals from accessing mem-
ory spaces that have not been specifically mapped for them.

Device    addresses Virtual    addresses

Main Memory

Physical addresses

IOMMU MMU

CPUDevice

Figure 2.10: IOMMU versus MMU

The mapping process can only be done by the CPU (in ring 0, of course), this
is the key to the security of the IOMMU.

The IOMMU is located in the Northbridge.

2.4.5 Memory access control

Just like the IOMMU can control DMA, we can use the TLB for some kind
of access control.

x86 hardware support

x86 memory pages can be tagged with 2 security-related flags:

• write-protection: The memory page is read only. It can also be executed.

• supervision-mode: The memory page can only be accessed in ring 0

15



x86 memory pages can also be tagged with other flags:

• present: Is the page in the main memory?

• dirty: Has the page been modified?

Emulating full access control on Userspace programs

As explained in the PageExec[8] documentation, there is a trick to get a full
access-control.

If we set the supervision-mode bit to every memory page, we will get pro-
tection faults traps from the MMU for every memory access made from the
userspace. But if we also clear the present bit, we end up in the page fault
handler with all the information we need to determine whether the access was
a read, a write or an execution access.

16



2.5 Linux Security Systems

In the purpose of this article, we will now restrict our choice of Operating
System to Linux only. The main reasons behind this choice are:

• Free/Libre and Open Source: We can see, edit, recompile and share our
work on Linux

• Numerous alreadyimplemented Mandatory Access Controls: We can study
them down to the source code

• LSM: A unique security framework that makes it simple to implement new
MAC

• Very good Documentation: No need to reverse engineer everything

• Portability: It is meant to work on many architectures

2.5.1 Linux Security Module

LSM[9] is a unique feature among Operating Systems. It allows security
modules targeted for Linux to be compiled built-in without having to manually
hook all the security-related system calls. Instead, security modules would just
need to fill a structure of function pointers so as LSM calls the security module
by itself.

One strong advantage of the use of LSM over just letting developers hook the
code by themselves is that LSM provides a stabler interface.

LSM was created when the NSA tried to merge SELinux mainline. Linus
complained of the lack of consensus between security researchers on what is the
right approach. This is why he asked the NSA developer to make SELinux as a
module. In response, Linus got a proposition to split SELinux into two parts,
the hook code (that is renamed LSM) and SELinux.

2.5.2 GrSecurity

GrSecurity[11] is a security suite that is not based on LSM. It is composed
of:

• Pax: Memory-related security improvements

• RBAC: GrSec’s implementation of the Role Based Access Control and the
Domain and Type Enforcement models.

• Chroot-hardening: Makes it harder for a process to escape from a chroot.

Pax

Pax[12, 19, 20, 21, 22, 23, 24, 25, 26, 27] aims to increase the security of
applications by randomizing the allocated/mmaped/stack and heap addresses to
make it harder for attackers to exploit buffer overflows[13]. Pax also implements
the emulation of the NX Bit on the x86 32 architecture.

17



A common problem of forbidding execution on writable pages is that it is
incompatible with trampoline functions[29, 30]. This problem has been worked-
around by introducing EmuTramp[28] in Pax.

Another solution is to compile everything with gcc’s flag -fPIC (Position In-
dependent Code).

RBAC

GrSecurity’s RBAC implementation aims for efficiency, feature completeness
and ease of use. It features a learning mode that allow system administrators
to execute the program in a controlled environment in order to automatically
learn the MAC policy for an application.

Chroot-hardening

Even though chroot is not a security feature, the GrSecurity developers de-
cided to build on it by extending its capacities:

• Prevent chrooted application from communicating with other applications
(only non-unix sockets are allowed)

• Do not allow chrooted application to connect to a Unix socket made by a
non-chrooted application

• Do not allow applications to exit the chroot (no double chroot, hardened
chdir(”/”))

• ...

The goal is to provide a system like FreeBSD’s light jails.

Trusted Path Execution

The goal of TPE[14] is to prevent users from executing programs that are not
trusted by the system administrator. Technically, this boils down to prevent-
ing the user the execution of programs that are not stored into a root-owned
directory such as /usr/bin and /bin.

Others

GrSecurity has a lot of features, it is impossible to even summarize them here.
To get a complete list, please visit http://grsecurity.net/features.php.

2.5.3 SELinux

Security-Enhanced Linux[16] is a Mandatory Access Control following the
RBAC, MLS and TDE. It has been developed by the USA’s National Secu-
rity Agency and has been released under the GNU General Public License on
December 22, 2000.

18



SELinux is composed of a kernel part and a userspace tools and patched
applications.

Kernel Inclusion, the birth of LSM

SELinux has been merged and made available in Linux 2.6.0 in August 2003.
It took more than three years before the SELinux and Linux developers (and
especially Linus) finally agree on making SELinux a module dependent of LSM.

Linus’s main objection to the merge was that security people are incapable of
agreeing on a single design. That is why he asked for more modularity. This lead
to the creation of LSM, a set of hooks presenting an interface security module
could link to.

The decision process

Contrary to most MAC systems in the kernel that uses filepath, SELinux bases
his decision on security label that have been tagged into the ressources SELinux
controls access to. For instance, contrary to AppArmor, when you hardlink a file
on SELinux, the resulting file will share the same security label. This wouldn’t
be the case with AppArmor as the security label depends on the filepath of the
new hardlink. The advantage of this technique is that it is compatible with any
filesystem, may it be local or distant without any modification of the filesystem
drivers.

Once an interaction has been retrieved by SELinux through LSM, SELinux
needs to take a decision whether the said interaction is legal or not. To do so,
SELinux uses its internal decision maker, the AVC.

To give a decision, the AVC needs:

• The source security ID(SID): The domain that initiated the interaction

• The target SID: The domain on which the action is performed

• The class: The class of action that is performed (security, process, system,
capabilities, filesystem, file, dir, socket, ...)

• The action performed (read, write, delete, unlock, fork, ...)

The output of the AVC is a binary decision. In the case the decision was
“denied”, it is likely that the event got logged.

The AVC’s decisions are based upon policies that have been written, compiled
and sent from the userspace.

The AVC can be turned on and off by the setenforce (0|1) in userspace. You
will need the sysadm r role to do that.

19



Kernel traces

Unless asked otherwise, the AVC will log any denied interaction. These logs
are available in the kernel logs.

You can see some kernel logs in the appendix A.2.

20



Chapter 3

Extending SELinux to track
memory-pages accesses

This report is about my Master research project. It is about using the
SELinux’s AVC to implement a mandatory access control on memory pages.

3.1 Installing an SELinux Distribution

My first goal was to install an SELinux-enabled Linux distribution. I wanted
to install it myself to be able to understand SELinux from the ground up.

There are two major Linux distributions that provide SELinux.

3.1.1 Fedora

Overview

Fedora is a mainstream Linux-based Operating System developed by the
Fedora-project and sponsored by Red Hat. There is a new release every 6
months and the support of each version lasts 13 months.

By default, Fedora comes with SELinux installed in targeted mode. It means
that only applications for which an SELinux has been written are properly
sandboxed.

Another particularity of Fedora’s SELinux base policy is that it uses both
DTE and MLS for its security labels.

Installation

Just like Ubuntu, Fedora is very easy to install. You just need to insert the
latest Fedora’s CD into your computer and follow the steps on the screen.

If you are looking for ease of use, Fedora is a great fit.

21



Fedora SELinux’s documentation is well-written, easy to find and understand.
Fedora has some tutorials to get you started in SELinux.

Comments

Fedora looks good and is simple to use. On the other hand, I didn’t get the
possibility to easily do all the installation process by myself.

As I wanted to learn from the ground up how works an SELinux-enabled OS,
Fedora wasn’t what I needed.

3.1.2 Gentoo Hardened

Overview

Gentoo is an highly-customizable Linux distribution. Gentoo is often referred
as a meta-distribution because of this.

Contrary to most Linux distributions, Gentoo doesn’t provide Binary pack-
ages, it is the user’s task to compile the package with the options he wants.

Another notable difference is that Gentoo is a rolling release. There are no
version numbers, the distribution is updated every day and tries as much as
possible to keep away from patching applications themselves.

Gentoo proposes an highly-secure version of itself called “Gentoo-Hardened”.
The typical Gentoo-Hardened distribution involves Pax, GrSecurity (without
RBAC), SELinux and an hardened GCC.

Installation

The installation of a Gentoo Hardened is explained in Gentoo’s SELinux
Handbook available at the address http://www.gentoo.org/proj/en/hardened/

selinux/selinux-handbook.xml.

It isn’t as easy to follow as Fedora, but at least, you can understand what is
done.

The kernel compilation and the installation of the hardened gcc went smoothly
but when I tried to install Gentoo SELinux’s base policy, I ran into multiple
errors that I couldn’t solve myself.

In the end, I have decided to use an image of an already installed Gentoo
Hardened as understanding the Kernel part was more important to me than the
Userspace one.

Comments

The outdated installation guide is a pity but other than that, Gentoo Hard-
ened works as expected and probably provides the most hardened Linux OS
possible.

22



This is the distribution I choose to work with.

3.2 Action Plan

Now that we have a working SELinux-enabled OS, it is time to start working
on implementing the memory access control system.

The plan is to tag memory pages when they are created with the SID of the
currently-running process.

Then, we rely on Pax’s PAGEEXEC feature to generate page faults whenever
a process accesses a memory page.

The last step is to give the information to SELinux’s AVC and enforce its
decision (allow or deny).

3.2.1 Adding ourselves in KBuild

Before we start introducing code in the kernel, it is important to register our
(not-yet-existing) feature to KBuild.

KBuild is the build system of the Linux kernel. It allows users to select what
features they would like to have in the kernel.

Our feature being an SELinux memory access control, we’ll modify the SELinux’s
KBuild file which is located at security/selinux/KBuild and add the following:

1 c o n f i g SECURITY SELINUX MEMORY
2 bool ”NSA SELinux c o n t r o l use r space memory a c c e s s e s ”
3 depends on SECURITY SELINUX && EXPERIMENTAL
4 help
5 This opt ion adds c o n t r o l over the use r space memory
6 a c c e s s e s .
7
8 I f you are unsure on how to answer t h i s quest ion ,
9 answer no .

config Give a unique name to the feature

bool Tell this feature is either activated or not (Boolean) and give a user-
friendly name to it

depends on Tell that this feature can only be activated if SELinux and the
experimental switch are activated

help The help text explaining what the feature is

23



We can now surround all our code related to this feature with #ifdef CON-
FIG SECURITY SELINUX MEMORY.

3.2.2 Tag the memory pages

The first thing we need to do is to associate an SELinux SID to a memory
page. This is done by adding a u32 in the struct page structure.

1 /∗
2 ∗ Each p h y s i c a l page in the system has a s t r u c t page
3 ∗ a s s o c i a t e d with i t to keep track o f whatever i t i s
4 ∗ we are us ing the page f o r at the moment .
5 ∗ Note that we have no way to track which ta sk s are
6 ∗ us ing a page , though i f i t i s a pagecache page , rmap
7 ∗ s t r u c t u r e s can t e l l us who i s mapping i t .
8 ∗/
9 s t r u c t page {

10 unsigned long f l a g s ; /∗ Atomic f l a g s , some p o s s i b l y
11 ∗ updated asynchronous ly ∗/
12 atomic t count ; /∗ Usage count , s e e below . ∗/
13
14 . . .
15
16 + #i f d e f CONFIG SECURITY
17 + u32 s i d ;
18 + #e n d i f
19 } ;

By default, SID will be 0. We now need to hook the page creation function
in order to initialize the SID with the SID of the process which requested the
allocation of the page.

3.2.3 Finding the functions to hook

According to what we saw earlier, the page fault handler and the page allo-
cator seem to be places to hook.

Hooking the page allocator

Finding the real “Page Allocator” wasn’t an easy task. In the end, it seems
like all the functions call the function get page from freelist.

1 /∗
2 ∗ g e t p a g e f r o m f r e e l i s t goes through the z o n e l i s t
3 ∗ t ry ing to a l l o c a t e a page .
4 ∗/
5 s t a t i c s t r u c t page ∗
6 g e t p a g e f r o m f r e e l i s t ( g f p t gfp mask ,
7 nodemask t ∗nodemask , unsigned i n t order ,
8 s t r u c t z o n e l i s t ∗ z o n e l i s t , i n t h igh zone idx ,

24



9 i n t a l l o c f l a g s , s t r u c t zone ∗ pre f e r r ed zone ,
10 i n t migratetype )
11 {
12 s t r u c t z o n e r e f ∗z ;
13 s t r u c t page ∗page = NULL;
14 . . .
15 + i f ( page )
16 + s e c u r i t y p a g e a l l o c ( page ) ;
17
18 re turn page ;
19 }

This hook is special as we don’t need to prevent the allocation. LSM just
needs to know when a memory page has been allocated because

Hook the page fault handler

From what we saw earlier, the page fault handler is the place where we can
do the memory access control. As we want to be good Linux citizens, we create
an LSM hook for it.

As seen on figure 2.8, following the page fault handler’s flow of execution is a
bit difficult. Anyway, we only want SELinux to do the access control when we
are sure the page is valid. So, no need to look before the good area label.

I found out that trying to access the page before the call to handle mm fault
was really painful. This is why I accepted that the page was mapped before I
do any kind of access control. This shouldn’t matter as I don’t let the program
execute any further (SIGSEGV) if SELinux denies access.

Here is the code:

1 /∗
2 ∗ This rou t ine handles page f a u l t s . I t determines the
3 ∗ address , and the problem , and then pas s e s i t o f f to
4 ∗ one o f the appropr ia te r o u t i n e s .
5 ∗/
6 dot rap l inkage void kprobes
7 d o p a g e f a u l t ( s t r u c t p t r e g s ∗ regs ,
8 unsigned long e r r o r c o d e )
9 {

10
11 [ . . . ]
12
13 good area :
14
15 [ . . . ]
16
17 /∗

25



18 ∗ I f f o r any reason at a l l we couldn ’ t handle
19 ∗ the f a u l t , make sure we e x i t g r a c e f u l l y ra the r
20 ∗ than e n d l e s s l y redo the f a u l t :
21 ∗/
22 f a u l t = handle mm fault (mm, vma , address ,
23 wr i t e ? FAULT FLAG WRITE : 0 ) ;
24 i f ( u n l i k e l y ( f a u l t & VM FAULT ERROR) ) {
25 mm fau l t e r ror ( regs , e r ro r code , address , f a u l t ) ;
26 re turn ;
27 }
28
29 + /∗ LSM HOOK ∗/
30 + page = fo l l ow page (vma , address , FOLL GET) ;
31 + i f ( l i k e l y ( e r r o r c o d e & PF USER) ) {
32 + i f ( u n l i k e l y ( s e c u r i t y p a g e f a u l t ( page , a c c e s s ) ) ) {
33 + /∗ b a d a r e a a c c e s s e r r o r ( regs , e r ro r code ,
34 + address ) ;
35 + return ;∗/
36 + }
37 + }
38
39 [ . . . ]
40
41 }

3.2.4 Adding the LSM hooks

LSM is an abstraction layer, its sole purpose is to be called by the hooks and
forward to the right security module. To do so, LSM uses a giant structure
in which it stores function pointers. These pointers are then initialized by the
LSM module that have been chosen by the Linux user.

Add the function pointers

The structure we need to hack is struct security operations located in in-
clude/linux/security.h. Let’s add the two new function pointers we need at the
end of struct security operations’s definition:

1 s t r u c t s e c u r i t y o p e r a t i o n s {
2 char name [SECURITY NAME MAX + 1 ] ;
3 [ . . . ]
4 + #i f d e f CONFIG SECURITY SELINUX MEMORY
5 + i n t (∗ p a g e f a u l t ) ( s t r u c t page ∗page ,
6 + enum page acce s s a c c e s s ) ;
7 + i n t (∗ p a g e a l l o c ) ( s t r u c t page ∗page ) ;
8 + #e n d i f /∗ CONFIG SECURITY SELINUX MEMORY ∗/
9 } ;

26



Creating hook functions

To create new hook functions, you need to define them in security/security.c.
In our case, we add at the end of the file this code:

1 + i n t s e c u r i t y p a g e f a u l t ( s t r u c t page ∗page ,
2 + enum page acce s s a c c e s s )
3 + {
4 + /∗ Test that s e c u r i t y o p s has been i n i t i a l i s e d
5 + ∗ be f o r e jumping to the r i g h t func t i on .
6 + ∗/
7 + i f ( s e c u r i t y o p s )
8 + return s e c u r i t y o p s−>p a g e f a u l t ( page , a c c e s s ) ;
9 + e l s e

10 + return 0 ;
11 + }
12 +
13 + i n t s e c u r i t y p a g e a l l o c ( s t r u c t page ∗page )
14 + {
15 + /∗ We t e s t f o r s e c u r i t y o p s−>p a g e a l l o c because
16 + ∗ p a g e a l l o c shouldn ’ t be c a l l e d i f SELinux
17 + ∗ has not s t a r t e d yet . This means that at the
18 + ∗ end o f SELinux ’ s s t a r t i n g process , we need to
19 + ∗ s e t the s e c u r i t y o p s−>p a g e a l l o c func t i on
20 + ∗ po in t e r to the r i g h t p lace
21 + ∗ ( s ee s e l i n u x c o m p l e t e i n i t ( ) in
22 + ∗ s e c u r i t y / s e l i n u x /hooks . c ) .
23 + ∗/
24 + i f ( s e c u r i t y o p s && s e c u r i t y o p s−>p a g e a l l o c )
25 + return s e c u r i t y o p s−>p a g e a l l o c ( page ) ;
26 + e l s e
27 + return 0 ;
28 + }

Once we have defined the functions, we need to make them public by adding
them at the end of include/linux/security.h.

1 s t a t i c i n l i n e void f r e e s e c d a t a ( void ∗ secdata )
2 { }
3 #e n d i f /∗ CONFIG SECURITY ∗/
4 + i n t s e c u r i t y p a g e f a u l t ( s t r u c t page ∗page ,
5 + enum page acce s s a c c e s s ) ;
6 + i n t s e c u r i t y p a g e a l l o c ( s t r u c t page ∗page ) ;
7 #e n d i f /∗ ! LINUX SECURITY H ∗/

3.2.5 From LSM to the SELinux’s AVC

The LSM work is now done but we still need to implement SELinux’s side.

27



Let’s first implement the code that will receive the interaction from LSM and
transmit it to SELinux’s AVC:

1 #i f d e f CONFIG SECURITY SELINUX MEMORY
2 i n t s e l i n u x p a g e f a u l t ( s t r u c t page ∗page ,
3 enum page acce s s a c c e s s )
4 {
5 u32 s i d = c u r r e n t s i d ( ) ;
6 u32 t s i d = 0 ;
7 i n t memory class = MEMORY READ;
8
9 i f ( ! page ) {

10 return 1 ;
11 }
12 t s i d = page−>s i d ;
13
14 switch ( a c c e s s )
15 {
16 case page read :
17 memory class = MEMORY READ;
18 break ;
19 case page wr i t e :
20 memory class = MEMORY WRITE;
21 break ;
22 case page exec :
23 memory class = MEMORY EXEC;
24 break ;
25 }
26
27 return avc has perm ( s id , t s id , SECCLASS MEMORY,
28 memory class , NULL) ;
29 }
30
31 i n t s e l i n u x p a g e a l l o c ( s t r u c t page ∗page )
32 {
33 u32 s i d = c u r r e n t s i d ( ) ;
34
35 i f ( s i d == SECINITSID UNLABELED)
36 s i d = SECINITSID KERNEL ;
37
38 /∗ Label the memory pages ∗/
39 page−>s i d = s i d ;
40
41 re turn 0 ;
42 }
43 #e n d i f

Then, we need to register these functions into the SELinux’s struct secu-
rity operations:

28



1 s t a t i c
2 s t r u c t s e c u r i t y o p e r a t i o n s s e l i n u x o p s r e a d o n l y = {
3 . name = ” s e l i n u x ” ,
4
5 [ . . . ]
6
7 #i f d e f CONFIG SECURITY SELINUX MEMORY
8 . p a g e f a u l t = s e l i n u x p a g e f a u l t ,
9 . p a g e a l l o c = NULL,

10 #e n d i f
11 } ;

As you can see, page alloc is initialized to NULL. This is because this func-
tion shouldn’t be called before SELinux has started. The initialization of the
page alloc function pointer is then done in the function selinux complete init():

1 void s e l i n u x c o m p l e t e i n i t ( void )
2 {
3 pr in tk (KERN DEBUG ”SELinux : ”
4 ”Completing i n i t i a l i z a t i o n .\n ” ) ;
5
6 /∗ Set up any superb locks i n i t i a l i z e d p r i o r
7 ∗ to the p o l i c y load .
8 ∗/
9 pr in tk (KERN DEBUG ”SELinux : ”

10 ” Se t t i ng up e x i s t i n g superb locks .\n ” ) ;
11 i t e r a t e s u p e r s ( d e l a y e d s u p e r b l o c k i n i t , NULL) ;
12
13 pr in tk (KERN DEBUG ”SELinux : ”
14 ” S ta r t i ng memory tagg ing \n ” ) ;
15 s e l i n u x o p s . p a g e a l l o c = s e l i n u x p a g e a l l o c ;
16 }

29



3.3 Analysis

Recompiling the kernel and booting it leads to literally hundreds of thousands
of lines in the kernel logs.

Looking at them revealed only a few untagged pages that could have been
allocated before SELinux started as they were all related to the kernel logs.

Coverage

Given how low-level the memory protection we have implemented is, it is very
difficult to test if it works in all the situations.

This is why I created a simple test program that you can see in the appendix
B.3. The goal of this program is to first generate a read and a write access on
a global and local variable and then on the heap. Secondly, it tries to execute a
shellcode (to test PAX). The output of the program is available in the appendix
B.3.2.

Analyzing the SELinux logs shows that all the read pages are untagged. This
shouldn’t be the case and means that the SID stored in the struct page is not
permanent. There is still room for improvement.

Performance

When I first thought about doing this kind of memory access control, I thought
the performance hit would be tremendous but, when I tried it, I couldn’t feel any
difference in speed. I then looked at some old benchmarks of the PAGEEXEC
implementation[18] and realized how light was the performance hit.

In our case, the performance is roughly the same as we just add the cost of
SELinux’s AVC to the PAGEEXEC cost.

Of course, we need proper benchmarks to really put a boundary to the per-
formance hit.

3.4 Conclusion

According to the results so far, it seems possible to implement an efficient
Mandatory Access Control on memory pages. The method has been known for
at least 10 years, yet, tried to implement it.

The reason for that may lie in the complexity of tagging memory and writing
policies for it.

30



3.5 Perspectives

When fixed, this research project could be used by the Userspace to tag the
memory it allocates through malloc to achieve a greater granularity of memory
sharing. With such a system, some applications like the x-server could no longer
need to access all the memory but only some memory pages.

Another perspective is the ability to write a system-wide information flow
control by feeding the information gathered by SELinux’s AVC to PIGA[31].
PIGA could use the information from this research project to look for hidden
communication channels without always being pessimistic.

31



Appendix A

SELinux

A.1 Writing an SELinux policy

The best way to write a policy for an application is to write an selinux module
which is composed of three files:

• my module.te: The type-enforcement file. Defines the allowed interac-
tions.

• my module.fc: The file-constraint file. Defines the security label that will
be given to a file.

• my module.if: The interface file. This file is generally useless.

my module.te The type-enforcement file Let’s see an example of a template
of a .te file:

1 po l i cy module ( ${module } , 1 . 0 . 0 )
2
3 r e q u i r e { type ${ u s e r t } , tmp t , v a r l o g t ;}
4
5 type ${module exec t } ;
6 type ${module domain t } ;
7 type ${module tmp domain t } ;
8 type ${module log domain t } ;
9

10 #t r a n s i t i o n
11 r o l e ${ u s e r r } types ${module domain t } ;
12 domain type ( ${module domain t } ) ;
13 d o m a i n e n t r y f i l e ( ${module domain t } , ${module exec t })
14 domtrans pattern ( ${ u s e r t } , ${module exec t } , \
15 ${module domain t } ) ;
16
17 t y p e t r a n s i t i o n ${module domain t} tmp t : f i l e \
18 ${module tmp domain t } ;
19 t y p e t r a n s i t i o n ${module domain t} v a r l o g t : f i l e \
20 ${module log domain t } ;

32



Syntax The .te file syntax explained a bit

• policy module: Defines the name of the policy module and the version
number

• require: The external domain dependencies of the policy module

• type: Type declarated in this module

• #transition: The minimum set of rules to confine an application into a
domain at boot time

• role: Define a domain as a valid role for a domain

• domain type: A macro to define a new domain

• domain entry file: A macro to define the domain in which an app should
be executed in

• domtrans pattern: A macro to allow $user t to execute $module exec t in
the $module domain t domain

• type transition: If domain $module domain t writes a file that would take
the tmp t as a domain, change its security label to $module tmp domain t

Template variables The meaning of the template variables

• module: The name of the module

• user t: The domain from which the user will launch the application

• user r: The role of the user that will launch the application

• module exec t: The domain that will be given to the app’s binary (file
label)

• module domain t: The domain in which the application will be sandboxed

• module tmp domain t: The domain that will hold tmp files (file label)

• module log domain t: The domain that will hold log files (file label)

my module.fc The file-constraint file

1 #################################
2 ############ ############
3 ############ WARNING ############
4 ############ ############
5 #################################
6 # I f you update t h i s f i l e ,
7 # p l e a s e remember to add the types in the te f i l e
8 #
9

10 # Store ${app path} under the
11 # s e c u r i t y l a b e l system u : o b j e c t r : ${module exec t }
12 ${app path} −− system u : o b j e c t r : ${module exec t }

33



13
14 # Example o f tagg ing a complete d i r e c t o r y or anything
15 # e l s e i f you wr i t e the r i g h t regexp
16 #HOME DIR/\ .myapp ( / . ∗ ) ? use r u : o b j e c t r : myapp home t

A.2 Example of SELinux kernel logs

type=1405 audi t (1297364131 .091 :3 ) : bool=
xse rve r ob j e c t manager va l=1 o l d v a l=0 auid =4294967295

s e s =4294967295

type=1404 audi t (1297364131 .275 :4 ) : e n f o r c i n g=1
o l d e n f o r c i n g=0 auid =4294967295 s e s =4294967295

type=1400 audi t (1297364132 .331 :5 ) : avc : denied { bind }
f o r pid =1765 comm=”agetty ” ppid=1 scontext=system u :

system r : g e t t y t t context=system u : system r : g e t t y t
t c l a s s=n e t l i n k r o u t e s o c k e t

type=1400 audi t (1297364132 .336 :6 ) : avc : denied { getcap
} f o r pid =1649 comm=”sys log−ng” ppid=1648 scontext=

system u : system r : s y s l o g d t tcontext=system u : system r
: s y s l o g d t t c l a s s=proce s s

type=1400 audi t (1297364132 .336 :9 ) : avc : denied { bind }
f o r pid =1764 comm=”agetty ” ppid=1 scontext=system u :

system r : g e t t y t t context=system u : system r : g e t t y t
t c l a s s=n e t l i n k r o u t e s o c k e t

type=1400 audi t (1297364360 .545 :14) : avc : denied {
module request } f o r pid =1770 comm=”sshd ” ppid=1727
kmod=”net−pf−10” scontext=system u : system r : s shd t
tcontext=system u : system r : k e r n e l t t c l a s s=system

type=1400 audi t (1297364361 .477 :15) : avc : denied {
search } f o r pid =1770 comm=”sshd ” ppid=1727 name=”
dbus” dev=sdb1 ino =73300 scontext=system u : system r :
s shd t tcontext=system u : o b j e c t r :
sys tem dbusd var run t t c l a s s=d i r

34



Appendix B

Useful Pax documentation

B.1 PageExec

B.1.1 Design

The goal of PAGEEXEC is to implement the non-executable page feature using
the paging logic of IA-32 based CPUs.

Traditionally page protection is implemented by using the features of the
CPU Memory Management Unit. Unfortunately IA-32 lacks the hardware sup-
port for execution protection, i.e., it is not possible to directly mark a page as
executable/non-executable in the paging related structures (the page directory
(pde) and table entries (pte)). What still makes it possible to implement non-
executable pages is the fact that from the Pentium series on the Intel CPUs
have a split Translation Lookaside Buffer for code and data (AMD CPUs have
a split TLB since the K5 series however due to its organization it is usable for
our purposes only since the K7 core based CPUs).

The role of the TLB is to act as a cache for virtual/physical address trans-
lations that the CPU has to perform for every single memory access (be that
instruction fetch or data read/write). Without the TLB the CPU would have to
perform an expensive page table walk operation for every such memory access
and obviously that would be detrimental to performance.

The TLB operates in a simple manner: whenever the CPU wants to access a
given virtual address, it will first check whether the TLB has a cached translation
or not. On a TLB hit it will take the physical address directly from the TLB,
otherwise it will perform a page table walk to look up the required translation
and cache the result in the TLB as well (if the page table walk is unable to
find the translation or the result is in conflict with the access type, e.g., a write
to a read-only page, then the CPU will instead raise a page fault exception).
Note that hardware assisted page table walking and automatic TLB loading are
features specific to IA-32, other CPUs may have or need software assistance in
this operation. Since the TLB has a finite size, sooner or later it becomes full and
the CPU will have to purge entries to make room for new translations (on IA-
32 this is again automatically done in hardware). Software can also purge TLB
entries by either removing all translations (e.g., whenever a userland context
switch happens) or those corresponding to a specific virtual address.

As mentioned already, from the Pentium on Intel CPUs have a split TLB,

35



that is, virtual/physical translations are cached in two independent TLBs de-
pending on the access type: instruction fetch related memory accesses will load
the ITLB, everything else loads the DTLB (if both kinds of accesses are made
to a page then both TLBs will have an entry). TLB entry replacement works
also on a per TLB basis except for the software initiated purges which act on
both.

The above described TLB behaviour means that software has explicit control
over ITLB/DTLB loading: it can get notified on hardware TLB load attempts
if it sets up the page tables so that such attempts will fail and trigger a page
fault exception, and it can also initiate a TLB load by making the appropriate
memory access to have the CPU walk the page tables and load one of the TLBs.
This in turn is the key to implement non-executable pages: such pages can be
marked either as non-present or requiring supervisor level access in the page
tables hence userland memory accesses would raise a page fault. The page
fault handler can then decide whether it was an instruction fetch attempt (by
comparing the fault address to that of the instruction that raised the fault) or
a legitimate data access. In the former case we will have detected an execution
attempt in a non-executable page and can act accordingly (terminate the task),
in the latter case we can just change the affected page table entry temporarily
to allow user level access and have the CPU load it into the DTLB (we will of
course have to restore the page table entry to the old state so that further page
table walks will again raise a page fault).

The decision between using non-present or supervisor mode page table en-
tries for marking a page as non-executable comes down to performance in the
end, the latter being less intrusive because kernel initiated data accesses to
userland pages will not raise a page fault.

To sum it up, PAGEEXEC as implemented in PaX overloads the meaning
of the User/Supervisor bit in the ptes to mean the executable/non-executable
status and also makes sure that data accesses to non-executable pages still work
as before.

B.1.2 Implementation

PAGEEXEC requires two sets of changes in Linux: the kernel has to be taught
that the i386 architecture can do the proper non-executable semantics, and next
we have to deal with the special page faults that require kernel assisted DTLB
loading.

The lowlevel definitions of the capabilities of the paging logic are in include/asm-
i386/pgtable.h. Here we simply redefine the constants that are used for creating
the ptes of non-executable pages. One such use of these constants is the pro-
tection map[] array defined in mm/mmap.c which is referenced whenever the
kernel sets up a pte for a userland mapping. Since PAGEEXEC can be dis-
abled on a per task basis we have to modify all code that accesses this array so
that we provide an executable pte even if it was not explicitly requested. Af-
fected files include fs/exec.c (where the stack pages are set up), mm/mprotect.c,
mm/filemap.c and mm/mmap.c. The changes in the latter two cooperate in a
nontrivial way: do mmap pgoff() creates executable nonanonymous mappings
by default and it is the job of generic file mmap() to turn it into a non-executable
one (as the mapping turned out to be a file mapping). This logic ensures that
non-anonymous mappings of devices remain executable regardless of PAGE-

36



EXEC. We opted for this approach to remain as compatible as possible (by not
affecting all non-anonymous mappings) yet still make use of the non-executable
feature in the most frequently encountered case.

The kernel assisted DTLB loading logic is in the IA32 specific page fault han-
dler which in Linux is do page fault() in arch/i386/mm/fault.c. For easier code
maintenance we created our own page fault entry point called pax do page fault()
which gets called first from the lowlevel page fault exception handler page fault
found in arch/i386/kernel/entry.S.

First we verify that the given page fault is ours by checking for a userland
fault caused by access conflict (vs. not present page). Next we pay special
attention to faults caused by an instruction fetch since this means an attempt
of code execution in a non-executable page. Such faults are easily identified by
checking for a read access where the target address of the page fault is equal
to the userland instruction pointer (which is saved by the CPU at the time of
the fault for us). The default action is of course a task termination along with
a log message, only EMUTRAMP when enabled can change it (see separate
document).

Next we prepare the mask for setting up the special pte for loading the
DTLB and then we acquire the spinlock that guards MMU state changes (since
we are about to cause such a change ourselves). Holding the spinlock is also
necessary for looking up the target pte that we will modify and load into the
DTLB. If the pte state we looked up no longer corresponds to the fault type
then we must have raced with other MMU state changing code and pass down
the fault to the original fault handler. It is also the time when we can identify
(and pass down) copy-on-write page faults that have the same fault type but a
different pte state than what is caused by the PAGEEXEC logic.

Finally we change the pte to allow userland accesses to the given page then
perform a dummy read memory access that will have the CPU page table walk
logic load it into the DTLB and then we change the state back to be in supervisor
mode. There is a trick in this part of the code that is worth a few words. If the
TLB already has an entry for a given virtual/physical translation then initiating
a memory access will not cause a page table walk, that is, for our DTLB loading
to work we would have to ensure that the DTLB has no entries for our virtual
address. It turns out that different members of the Intel IA-32 family have a
different behaviour when the CPU raises a page fault during a page table walk
(which is our case): the old Pentium (but not the MMX version) CPUs would
still cache the translation if it described a present mapping but had an access
conflict (which is our case since we have a supervisor mode pte that is accessed
while executing in user mode) whereas newer CPUs (P6 core based ones, P4
and probably future CPUs as well) would not cache them at all. This means
that in the second case we can be sure that the DTLB has no translations for
our target virtual address and can omit a very expensive ’invlpg’ instruction (it
sped up the fast path by some 20% on a P3).

37



B.2 SegMem

B.2.1 Design

The goal of SEGMEXEC is to implement the non-executable page feature using
the segmentation logic of IA-32 based CPUs.

On IA-32 Linux runs in protected mode with paging enabled. This means
that for every memory access (be that instruction fetch or normal data access)
the CPU will perform a two step address translation. In the first step the logical
address decoded from the instruction is translated into a linear (or in another
terminology, virtual) address. This translation is done by the segmentation logic
whose details are explained in a separate document.

While Linux effectively does not use segmentation by creating 0 based and 4
GB limited segments for both code and data accesses (therefore logical addresses
are the same as linear addresses), it is possible to set up segments that allow to
implement non-executable pages.

The basic idea is that we divide the 3 GB userland linear address space into
two equal halves and use one to store mappings meant for data access (that is, we
define a data segment descriptor to cover the 0-1.5 GB linear address range) and
the other for storing mappings for execution (that is, we define a code segment
descriptor to cover the 1.5-3 GB linear address range). Since an executable
mapping can be used for data accesses as well, we will have to ensure that such
mappings are visible in both segments and mirror each other. This setup will
then separate data accesses from instruction fetches in the sense that they will
hit different linear addresses and therefore allow for control/intervention based
on the access type. In particular, if a data-only (and therefore non-executable)
mapping is present only in the 0-1.5 GB linear address range, then instruction
fetches to the same logical addresses will end up in the 1.5-3 GB linear address
range and will raise a page fault hence allow detecting such execution attempts.

B.2.2 Implementation

The core of SEGMEXEC is vma mirroring which is discussed in a separate
document. The mirrors for executable file mappings are set up in do mmap()
(an inline function defined in include/linux/mm.h) except for a special case with
RANDEXEC (see separate document). do mmap() is the one common function
called by both userland and kernel originated mapping requests.

The special code and data segment descriptors are placed into a new GDT
called gdt table2 in arch/i386/kernel/head.S. The separate GDT is needed for
two reasons: first it simplifies the implementation in that the CS/SS selectors
used for userland do not have to change, and second, this setup prevents a
simple attack that a single GDT setup would be subject to (the retf and other
instructions could be abused to break out of the restricted code segment used for
SEGMEXEC tasks). Since the GDT stores the userland code/data descriptors
which are different for SEGMEXEC tasks, we have to modify the lowlevel con-
text switching code called switch to() in arch/i386/kernel/process.c and the
last steps of load elf binary() in fs/binfmt elf.c (where the task is first prepared
to execute in userland).

The GDT also has APM specific descriptors which are set up at runtime and
must be propagated to the second GDT as well (in arch/i386/kernel/apm.c).

38



Finally the GDT stores also the per CPU TSS and LDT descriptors whose
content must be synchronized between the two GDTs (in set tss desc() and
set ldt desc() in arch/i386/kernel/traps.c).

Since the kernel allows userland to define its own code segment descriptors
in the LDT, we have to disallow it since it could be used to break out of the
SEGMEXEC specific restricted code segment (the extra checks are in write ldt()
in arch/i386/kernel/ldt.c).

39



B.3 The coverage test

B.3.1 The test itself

1 #inc lude <s t d i o . h>
2 #inc lude <malloc . h>
3
4 char s h e l l c o d e [ ] =
5 ”\xeb\ x1f \x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\

x0c\xb0\x0b”
6 ”\x89\ xf3 \x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\

xd8\x40\xcd”
7 ”\x80\xe8\xdc\ x f f \ x f f \ x f f / bin / sh ” ;
8
9 i n t g l o b a l ;

10
11 void t e s t v a l u e ( const char ∗var name , i n t ∗ value )
12 {
13 p r i n t f (” Test v a r i a b l e ’%s ’ (@=%p) \n” , var name ,

va lue ) ;
14 p r i n t f (” wr i t e : ” , va lue ) ;
15 ∗ value = 0x42 ;
16 p r i n t f (” ok\n”) ;
17
18 p r i n t f (” read : ” , va lue ) ;
19 p r i n t f (”0 x%x\n\n” , ∗ value ) ;
20 }
21
22 i n t main ( i n t argc , char ∗∗ argv )
23 {
24 i n t l o c a l ;
25
26 t e s t v a l u e (” l o c a l ” , &l o c a l ) ;
27 t e s t v a l u e (” g l o b a l ” , &g l o b a l ) ;
28
29 p r i n t f (” Wil l c r e a t e an heap v a r i a b l e : ”) ;
30 i n t ∗heap = ( i n t ∗) mal loc ( s i z e o f ( i n t ) ) ;
31 p r i n t f (” ok (@=%p) \n” , heap ) ;
32
33 t e s t v a l u e (” heap ” , heap ) ;
34
35 p r i n t f (” Wil l now execute the s h e l l c o d e \n”) ;
36 (∗ ( void (∗ ) ( ) ) s h e l l c o d e ) ( ) ;
37
38 re turn 0 ;
39 }

B.3.2 Output of the program on the hardened Kernel

40



1 p igaos ˜ # . / a . out
2 Test v a r i a b l e ’ l o c a l ’ (@=0x5b45c2d8 )
3 wr i t e : ok
4 read : 0x42
5
6 Test v a r i a b l e ’ g loba l ’ (@=0x804a078 )
7 wr i t e : ok
8 read : 0x42
9

10 Wil l c r e a t e an heap v a r i a b l e : ok (@=0x80548b8 )
11 Test v a r i a b l e ’ heap ’ (@=0x80548b8 )
12 wr i t e : ok
13 read : 0x42
14
15 Wil l now execute the s h e l l c o d e
16 Processus a r r e t e

B.3.3 The generated SELinux trace

1 [ 5408 .342034 ] avc : granted { execute } f o r pid =1836
comm=”bash” name=”a . out ” dev=sda3 ino =130496 scontext=
root : sysadm r : sysadm t tcontext=root : o b j e c t r :
user home t t c l a s s=f i l e

2
3 [ 5408 .342034 ] avc : granted { exe cu t e no t r an s } f o r

pid =1836 comm=”bash” path=”/root /a . out ” dev=sda3 ino
=130496 scontext=root : sysadm r : sysadm t tcontext=root :
o b j e c t r : user home t t c l a s s=f i l e

4
5 [ 5408 .344663 ] avc : granted { execute } f o r pid =1836

comm=”a . out ” path=”/root /a . out ” dev=sda3 ino =130496
scontext=root : sysadm r : sysadm t tcontext=root : o b j e c t r
: user home t t c l a s s=f i l e

6
7 [ 5408 .344900 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

8
9 [ 5408 .344928 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

10
11 [ 5408 .344951 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

12
13 [ 5408 .344974 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root

41



: sysadm r : sysadm t t c l a s s=memory
14
15 [ 5408 .345003 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

16
17 [ 5408 .345022 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

18
19 [ 5408 .345042 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

20
21 [ 5408 .345057 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

22
23 [ 5408 .345072 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

24
25 [ 5408 .345086 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

26
27 [ 5408 .345101 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

28
29 [ 5408 .345126 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

30
31 [ 5408 .345146 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

32
33 [ 5408 .345160 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

34
35 [ 5408 .345175 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

36
37 [ 5408 .345190 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

38

42



39 [ 5408 .345210 ] avc : denied { wr i t e } f o r pid =1836 comm
=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

40
41 [ 5408 .345226 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

42
43 [ 5408 .345256 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

44
45 [ 5408 .345270 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

46
47 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

48
49 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

50
51 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

52
53 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

54
55 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

56
57 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

58
59 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

60
61 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

62
63 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=

43



system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory
64
65 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

66
67 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

68
69 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

70
71 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

72
73 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

74
75 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

76
77 [ 5408 .345274 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

78
79 [ 5408 .345274 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

80
81 [ 5408 .345274 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

82
83 [ 5408 .347922 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

84
85 [ 5408 .347947 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

86
87 [ 5408 .347970 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

88

44



89 [ 5408 .347996 ] avc : denied { read } f o r pid =1836 comm
=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

90
91 [ 5408 .348227 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

92
93 [ 5408 .348255 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

94
95 [ 5408 .348280 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

96
97 [ 5408 .348299 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

98
99 [ 5408 .348320 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

100
101 [ 5408 .348340 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

102
103 [ 5408 .348361 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

104
105 [ 5408 .348376 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

106
107 [ 5408 .348391 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

108
109 [ 5408 .348405 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

110
111 [ 5408 .348419 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

112
113 [ 5408 .348433 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=

45



system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory
114
115 [ 5408 .348448 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

116
117 [ 5408 .348462 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

118
119 [ 5408 .348477 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

120
121 [ 5408 .348492 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

122
123 [ 5408 .348506 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

124
125 [ 5408 .348521 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

126
127 [ 5408 .348535 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

128
129 [ 5408 .348550 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

130
131 [ 5408 .348570 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

132
133 [ 5408 .348585 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

134
135 [ 5408 .348606 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

136
137 [ 5408 .348921 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

138

46



139 [ 5408 .348942 ] avc : denied { wr i t e } f o r pid =1836 comm
=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

140
141 [ 5408 .348966 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

142
143 [ 5408 .348989 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

144
145 [ 5408 .349012 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

146
147 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

148
149 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

150
151 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

152
153 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

154
155 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

156
157 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

158
159 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

160
161 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

162
163 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=

47



system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory
164
165 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

166
167 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

168
169 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

170
171 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

172
173 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

174
175 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

176
177 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

178
179 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

180
181 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

182
183 [ 5408 .349027 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

184
185 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

186
187 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

188

48



189 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm
=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

190
191 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

192
193 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

194
195 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

196
197 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

198
199 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

200
201 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

202
203 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

204
205 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

206
207 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

208
209 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

210
211 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

212
213 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=

49



system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory
214
215 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

216
217 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

218
219 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

220
221 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

222
223 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

224
225 [ 5408 .349027 ] avc : denied { read } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=
system u : o b j e c t r : u n l a b e l e d t t c l a s s=memory

226
227 [ 5408 .349027 ] avc : denied { wr i t e } f o r pid =1836 comm

=”a . out ” scontext=root : sysadm r : sysadm t tcontext=root
: sysadm r : sysadm t t c l a s s=memory

228
229 [ 5408 .349800 ] attempt in : / root /a . out , 0804 a000−0804b000

00001000
230
231 [ 5408 .349800 ] task : / root /a . out ( a . out ) : 1836 , uid / euid :

0/0 , PC: 0804 a040 , SP : 5 e2aeb6c
232
233 [ 5408 .349800 ] at PC: eb 1 f 5e 89 76 08 31 c0 88 46 07 89

46 0c b0 0b 89 f3 8d 4e
234
235 [ 5408 .351088 ] at SP−4: 5 e2aeb98 080485d8 08048738

08055188 080485 f0 5 e2aeb98 5234 a605 52484 b80 00000042
08055188 080485 f0 00000000 5 e2aec18 52333bd6 00000001
5 e2aec44 5 e2aec4c 523296 a0 524743d0 524743d0 f f f f f f f f

50



Bibliography

[1] Roger Needham, Protection systems and protection implementations, Proc.
1972 Fall Joint Computer Conference, AFIPS Conf. Proc., vol. 41, pt. 1, pp.
571-578

[2] James P. Anderson, Computer Security Threat Monitoring and Surveillance,
James P. Anderson Co., Fort Washington, PA (Apr. 1980)

[3] Robert L. Brotzman, CSC-STD-004-85: Computer Security Requirements
- Guidance For Applying The Department Of Defense Trusted Computer
System Evaluation Criteria In Specific Environments (June 25, 1985)

[4] D. E. Bell and L. J. La Padula. Secure computer systems : Mathematical
foundations and model. Technical Report M74-244, The MITRE Corpora-
tion, Bedford, MA, May 1973.

[5] Biba, K. J. Integrity Considerations for Secure Computer Systems, MTR-
3153, The Mitre Corporation, April 1977.

[6] Boebert, W. E. and Kain, R. Y. . A practical alternative to hierarchical
integrity policies. In The 8th National Computer Security Conference, pp.
18–27, Gaithersburg, MD, USA. (1985)

[7] Ferraiolo, D.F. and Kuhn, D.R. (October 1992). Role-Based Access Control.
15th National Computer Security Conference. pp. 554–563

[8] http://pax.grsecurity.net/docs/pageexec.txt

[9] Chris Wright and Crispin Cowan. Linux Security Modules: General Security
Support for the Linux Kernel. August 2002

[10] Daniel P. Bovet, Marco Cesati. Understanding the Linux Kernel. O’Reilly,
Third Edition. November 2005

[11] Spengler, B. (2002). Detection, prevention, and containment : A study of
grsecurity. In Libre Software Meeting 2002 (LSM2002), Bordeaux, France.
http://www.grsecurity.net/papers.php.

[12] http://pax.grsecurity.net/docs/pax.txt

[13] Elias Levy. Smashing the Stack for Fun and Profit. August 1996

51



[14] Niki A. Rahimi. Trusted path execution for the linux 2.6 kernel as a linux
security module. In Proceedings of the annual conference on USENIX An-
nual Technical Conference (ATEC ’04). USENIX Association, Berkeley, CA,
USA, 34-34.

[15] Kernel Trap. Abusing Chroot. 2007. http://kerneltrap.org/Linux/Abusing\
_chroot

[16] Bill Mccarty, SELinux: NSA’s Open Source Security Enhanced Linux.
O’Reilly, First Edition, October 1994.

[17] Frank Mayer, Karl MacMillan, David Caplan, SELinux By Example. Pren-
tice Hall, First Edition (August 6, 2006).

[18] http://www.pjvenda.net/linux/doc/pax-performance/

[19] http://pax.grsecurity.net/docs/noexec.txt

[20] http://pax.grsecurity.net/docs/aslr.txt

[21] http://pax.grsecurity.net/docs/segmexec.txt

[22] http://pax.grsecurity.net/docs/mprotect.txt

[23] http://pax.grsecurity.net/docs/randustack.txt

[24] http://pax.grsecurity.net/docs/randkstack.txt

[25] http://pax.grsecurity.net/docs/randmmap.txt

[26] http://pax.grsecurity.net/docs/randexec.txt

[27] http://pax.grsecurity.net/docs/vmmirror.txt

[28] http://pax.grsecurity.net/docs/emutramp.txt

[29] Thiago Macieira. Moving code around. December 2010. http://labs.qt.

nokia.com/2010/12/04/moving-code-around/

[30] Thiago Macieira. Moving code around more easily. December 2010. http:

//labs.qt.nokia.com/2010/12/05/moving-code-around-more-easily/

[31] M. Blanc, J. Briffaut, J.-F. Lalande, and C. Toinard. Enforcement of secu-
rity properties for dynamic mac policies. In IARIA, editor, Third Interna-
tional Conference on Emerging Security Information, Systems and Technolo-
gies, pages 114–120, Athens/Vouliagmeni, Greece, June 2009. IEEE Com-
puter Society Press.

52


